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Abstract
The analytical study of heat conduction in an anharmonic chain is considered
here. We investigate an one-dimensional system (directly related to the
Frenkel–Kontorova model) with anharmonic cosine on-site potential and
harmonic interparticle interaction. We start with a stochastic thermal reservoir
connected to each site of the system, and analyse the behaviour of the
conductivity in the steady state with all the heat baths as we turn off the interior
reservoirs, i.e., as we keep the heat baths at the boundaries only. For a weak
interparticle potential and small anharmonicity, in a perturbative computation,
we derive an analytic expression for the heat conductivity which indicates
that the Fourier’s law holds only when each site is connected to a heat bath.
To show the trustworthiness of our perturbative computation, we also derive
an expression for the conductivity by starting from the exact solution of the
linear part of the dynamics and compare with the result which comes from the
previous perturbative analysis.

PACS numbers: 05.70.Ln, 05.40.−a, 05.45.−a, 44.10.+i

1. Introduction

The analytical derivation of macroscopic phenomenological laws of thermodynamics from
microscopic models of interacting particles is a challenging problem of nonequilibrium
statistical physics. In particular, the rigorous derivation of Fourier’s law of heat conduction is
still unknown, even in the 1D context [1, 2]. A pioneering work on this subject is the study
of a chain of interacting harmonic oscillators coupled to thermal reservoirs at the boundaries
[3]. There, the authors calculate the covariance of the steady Gaussian distribution and show
that the heat current is independent of the length of the chain, i.e., the heat conductivity
diverges in the thermodynamic limit, and so, the Fourier’s law does not hold. Since then,
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many works have been devoted to the problem of heat conduction and Fourier’s law, but
almost all of them by means of computer simulations [1]. Besides the difficulty to arrive
at correct conclusions from numerical studies, the existence of contradicting results makes
clear the necessity of the development of analytical methods of modelling the heat conduction
problem.

In this scenario of more accurate studies, the harmonic chain of oscillators has been
recently revisited for the case of each site connected to a stochastic Langevin heat bath [4].
Considering the ‘self-consistent’ condition, which means that there is no heat flow between
an inner site and its reservoir, the stationary nonequilibrium state is analysed, and it is shown
that Fourier’s law holds in such case. Of course, as the coupling between each inner site and
its thermal reservoir is turned off, the heat conductivity diverges for the harmonic chain, and
Fourier’s law is lost, as previously calculated in [3]. Concerning the central problem of heat
conduction, i.e., the rigorous treatment of a nonlinear (anharmonic) system, the results are
quite few: e.g., it is proved the existence of steady states in [5], and the positivity of entropy
production in [6].

In the direction of the development of analytical techniques to treat nonlinear systems,
some problems involving small anharmonic interactions have been considered quite recently
in [7, 8] (by one of the authors and collaborators). In a perturbative approach, the harmonic
chain with thermal bath at each site and a small anharmonic φ4 on-site potential is investigated
in [7], and a chain with harmonic on-site potential and cosine-type coupling interaction
(a la rotor model) is considered in [8], where a phase transition (Fourier–non-Fourier behaviour)
is claimed to appear.

In the present paper, we consider a system related to a commonly used model of physical
interest, namely, the Frenkel–Kontorova model, which involves a cosine on-site potential
and a harmonic interparticle interaction (the opposite of [8]). We start with a version where
each site of the chain is connected to a thermal reservoir (as in [6–8]), and we study the
case of small couplings for the interior sites and baths in order to infer the behaviour of
the system with heat baths at the boundaries only. We show that, if the coefficient of
the on-site cosine potential is small and the interaction between sites is weak, up to first
order in a perturbative computation, the anharmonicity does not introduce any change in
the thermal conductivity derived from the harmonic chain. It indicates that Fourier’s law
holds for the system with thermal reservoirs at each site, but not when we turn off the
interior heat baths. Our results agree with numerical simulations presented in the literature
[9] (recall that we are in the region of small anharmonicity—we give more comments in
the section of concluding remarks). Note that the anharmonic cosine potential is bounded,
and so, a perturbative analysis of the anharmonicity (taking small the coefficient of the
anharmonic potential) might be correct (we turn to this question and recall some related
problems involving similar dynamical systems which have been treated perturbatively and also
rigorously by one of the authors and collaborators in the concluding remarks). However, as
we also treat perturbatively the harmonic interparticle interaction, to show the trustworthiness
of our results, we still compute the thermal conductivity by using (for the harmonic part of the
interaction) the rigorous result presented in [4] and compare with our previous perturbative
analysis.

The rest of the paper is organized as follows. In section 2, we present the model in detail.
In section 3, we introduce our formalism, study the heat flow and obtain an expression for
the conductivity. This expression is derived again by starting from the exact solution of the
linear part of the dynamics [4] in section 4. Section 5 is devoted to the concluding remarks.
Some mathematical manipulations related to expressions of sections 3 and 4 are presented in
the appendix.
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2. The model

We consider a crystal chain with harmonic coupling interactions between two different sites and
a cosine on-site potential: in the case of nearest-neighbour harmonic interparticle potential
(and thermal baths at the boundaries only, details below), we have the Frenkel–Kontorova
model, which is commonly used in nonlinear physics [10]. Precisely, we take a scalar field
lattice model with N unbounded spin variables and with stochastic Langevin dynamics given
by the differential equations

dqj = pj dt, j = 1, 2, . . . , N,

dpj = −∂H

∂qj

dt − ζjpj dt + γ
1/2
j dBj , j = 1, 2, . . . , N,

(1)

where Bj are independent Wiener processes (i.e., dBj/dt are independent white noises); ζj is
the coupling between the site j and its heat bath; and γj = 2ζjTj where Tj is the temperature
of the j th thermal reservoir. For the Hamiltonian H we take

H(q, p) =
N∑

j=1


1

2
p2

j + U(1)(qj ) + λU(2)(qj ) +
1

2

∑
l �=j

qjJjlql


 ,

U(1)(qj ) = Mq2
j

/
2, M > 0,

λU(2)(qj ) = λ(1 − cos qj ),

(2)

and Jjl = Jlj . Later, we will consider nearest-neighbour interactions, which means a coupling
interaction such as (after small adjustments in the U(1) potential)

N∑
j=1

V (qj − qj−1), V (q) = ω2

2
q2, (3)

and we assume Dirichlet boundary conditions: q0 = 0 = qN+1.
To get the expression for the heat flow, i.e., the energy current in the system, we write the

energy of a single spin (oscillator) j as

Hj(q, p) = 1

2
p2

j + U(qj ) +
1

2

∑
l �=j

V (qj − ql), (4)

where U(qj ) = U(1)(qj ) + λU(2)(qj ) and V follow from (1) above and from
∑N

j=1 Hj = H .
We have 〈

dHj(t)

dt

〉
= 〈Rj(t)〉 − 〈F j→ − Fj←〉, (5)

where 〈·〉 means the expectation with respect to the noise distribution. The energy flux between
the j th reservoir and the j th site is given by the expression

〈Rj(t)〉 = ζj

(
Tj − 〈

p2
j

〉)
, (6)

and the heat current inside the chain is given by

Fj→ =
∑
l>j

∇V (qj − ql)
pj + pl

2
, Fj← =

∑
l<j

∇V (ql − qj )
pj + pl

2
. (7)

The stationary state, as well known, is characterized by 〈dHj (t)/dt〉 = 0.
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To simplify the notation, it is useful to introduce the phase-space vector φ = (q, p), with
2N coordinates. Hence, the equation for the dynamics (1) becomes

dφj = φj+N dt,

dφi = −Mi−N,j ′φj ′ dt − λ sin(φi−N) dt − ζiφi dt + γ
1/2
i dBi,

(8)

where Mi−N,j = Mδi−N,j + Ji−N,j . Above and in what follows, we use the index notation:
j for index values in the set {1, 2, . . . , N}, i for values in {N + 1, N + 2, . . . , 2N}, and k in
{1, 2, . . . , 2N}. We also take ζi = ζi−N, γi = γi−N , and obvious sums over repeated indices
will be omitted in future expressions.

In the following section, we will study the dynamics and the heat flow in the steady state
(reached as t → ∞) following the approach proposed in previous works [7, 8].

3. The integral formalism and the heat flow

To obtain the integral representation for the correlations (and so, for the heat flow in the
steady state), we start with a system without the coupling J among the sites and also without
the anharmonic potential. Then, we solve the simple related dynamical problem and, in the
following, we introduce the coupling J and the anharmonicity using a well-known tool of
theory of stochastic differential equations: the Girsanov theorem [11]. Finally, we investigate
the consequences of turning off the interior heat baths.

For clearness, we describe some expressions and procedures already presented in previous
papers [7, 8].

The equation of dynamics, for J and λ = 0, becomes

φ̇ = −A0φ + ση, (9)

where A0 and σ are 2N × 2N matrices given by

A0 =
(

0 −I

MI 


)
, σ =

(
0 0

0
√

2
T

)
, (10)

I, 
 and T are diagonal N ×N matrices: Ijl = δjl, 
jl = ζj δjl, Tj l = Tjδjl ; η are independent
white noises. The solution of the linear equation (9) above is the Ornstein–Uhlenbeck process
given by

φ(t) = e−tA0
φ(0) +

∫ t

0
ds e−(t−s)A0

ση(s). (11)

For simplicity we will take φ(0) = 0. This Gaussian process has the covariance

C(t, s) ≡ 〈φ(t)φ(s)〉 =
{

e−(t−s)A0 C(s, s) if t � s,

C(t, t) e−(s−t)A0T

if t � s,

C(t, t) =
∫ t

0
ds e−sA0

σ 2 e−sA0T

.

(12)

We still have the following useful expression (obtained by, e.g., diagonalizing A0) for a
single site φj = (qj , pj )

exp(−tA0) = e(−tζj /2) cosh(tρj )

{(
1 0
0 1

)
+

tanh(tρj )

ρj

(
ζj /2 1
−M −ζj /2

)}
, (13)

the expressions for φ involving 2N × 2N matrices follow immediately. Above, we have
ρj ≡ [(ζj /2)2 − M]1/2, with ζj ,M > 0 and ρj is real or pure imaginary, depending on ζj and
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M. Anyway, there is no problem with the time evolution: as t → ∞ there is a convergence to
the equilibrium steady distribution that is Gaussian, with mean zero and covariance

C =
∫ ∞

0
ds e−sA0

σ 2 e−s(A0)T =
( T

M
0

0 T

)
. (14)

As each isolated site is connected to a unique thermal reservoir, in the limit of t → ∞, it is
governed by a Boltzmann distribution at temperature Tj .

Now we introduce the interparticle interaction and the anharmonic potential by using the
Girsanov theorem. This theorem gives a measure ρ for the complete process (8) in terms
of the measure µC obtained for the process with J and λ = 0. For example, the two-point
correlation function for the complete process can be written as

〈ϕu(t1)ϕv(t2)〉 =
∫

φu(t1)φv(t2)Z(t) dµC, t1, t2 < t, (15)

where ϕ is the solution for the complete process and φ is the solution (11) for the related
harmonic and decoupled process (9). And the ‘corrective’ factor is

Z(t) = exp

(∫ t

0
u · dB − 1

2

∫ t

0
u2 ds

)
,

γ
1/2
i ui = −Ji−N,jφj − λV ′(φ)i,

(16)

with λV ′(φ)i ≡ λ sin(φi−N); the inner products above are in R
2N . Mathematical

manipulations and details are given in appendix A.
For the particular case of J involving only nearest-neighbour interactions, we have

Fj→j+1 = (Jj,j+1)
2

M

Tj+1 − Tj

ζj+1 + ζj

. (17)

And so, as in the steady state we have 〈dHj/dt〉 = 0 (together with 〈Rj 〉 = 0 for the inner
sites), it follows that

F→ ≡ F1→2 = F2→3 = · · · = FN−1→N. (18)

With the notation Jj ≡ Jj,j+1, from (18) above we have

F→ = J 2
1 (T2 − T1)

M(ζ1 + ζ2)
= J 2

2 (T3 − T2)

M(ζ2 + ζ3)

= J 2
3 (T4 − T3)

M(ζ3 + ζ4)
= · · ·
= J 2

N−1(TN − TN−1)

M(ζN−1 + ζN)
. (19)

Hence we get, for simplicity assuming that J 2
1 = J 2

2 = · · · = J 2
N−1 ≡ J 2, summing up

F1→2 + F2→3 + · · · + FN−1→N ,

F→ = J 2

M(ζ1 + 2ζ2 + 2ζ3 + · · · + 2ζN−1 + ζN)
(TN − T1). (20)

That is, for the particular case of uniform coupling with the heat bath ζj = ζ , Fourier’s law
holds

F→ = χ
TN − T1

N − 1
, χ = J 2

2ζM
. (21)
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But if we make smaller and smaller the coupling with the inner baths, the flux F→ goes to

F→ → J 2

(ζ1 + ζN)M
(TN − T1), (22)

i.e., the heat flow becomes proportional to the temperature difference instead of to the
temperature gradient, and so, Fourier’s law no longer holds. Precisely, up to first order
in λ, our result indicates a ballistic behaviour for the system, as it happens in the harmonic
chain.

4. Using the exact solution of the harmonic part

Our approach allows us, in a perturbative analysis, to obtain analytical expressions for the
thermal conductivity, heat flow, etc, and it is valid for quite general interactions. However, one
may pose the question of the reliability of the perturbative computations for the interparticle
interaction. There is no rigorous results about the conductivity coefficient, etc, on anharmonic
systems to compare with our expressions. However, there is a recent rigorous work on
harmonic chains with thermal reservoirs at each site [4]. Thus, for a comparison, in this
section we derive the expression for the heat conductivity by starting from the exact solution
[4] for the linear system and introducing, in the following, the nonlinear terms via Girsanov
theorem.

The results of [4] follow for the specific nearest-neighbour interaction

Jlj = −ω2�lj , l, j ∈ {1, 2, . . . , N}, (23)

where � is the lattice Laplacian (with Dirichlet boundary condition)

�lj = −2δlj + δl−1,j + δl+1,j . (24)

Now we consider such restriction and also that ζ1 = · · · = ζj = · · · ≡ ζ . We also take
ω2 = O(λ).

The equation for the linear dynamics becomes now

φ̇ = −Aφ + ση, A =
(

0 −I

MI + J 


)
, (25)

where σ , η and 
 are as previously defined (9) and (10). Then, the solution is given by the
Ornstein–Uhlenbeck process, as in the previous section, with the replacement of A0 by A, i.e.,
of MI by MI − ω2�. As computed in section 2 and appendix B of [4], the covariance of the
steady distribution is

lim
t→∞ C(t, t) =

∫ ∞

0
ds e−sA σ 2 e−sAT =

(
U Z

ZT V

)
, (26)

where any N × N block of the covariance matrix above (U,V and Z) can be obtained by a
linear transformation of the form

Bjj ′ =
N∑

r=1

B
(r)
jj ′ Tr, (27)
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Tr is the temperature of the rth bath, and

B
(r)
jj ′ =

N∑
j1,j2=1

Fj,j1Fj ′,j2f
(B)

(
cj1 , cj2

)
Fr,j1Fr,j2 ,

Fj,j ′ =
√

2

N + 1
sin

(
πjj ′

N + 1

)
,

cj = cos

(
πj

N + 1

)
,

f (U)(x, y) = ζ 2

ω4

1

G(x, y)
,

f (V )(x, y) = 1 − (x − y)2

G(x, y)
,

f (Z)(x, y) = ζ

ω2

y − x

G(x, y)
,

G(x, y) = (x − y)2 +
ζ 2

ω2

(
M

ω2
+ 2 − x − y

)
,

(28)

where F is the matrix which diagonalizes the lattice Laplacian �, and F has the properties:
F = FT = F−1.

Then, as previously planned out, we introduce the nonlinear terms in the dynamics via
the Girsanov theorem. We obtain (following the steps of section 3)

〈ϕu(t1)ϕv(t2)〉 =
∫

φu(t1)φv(t2)Z(t) dµC (φ), t1, t2 < t,

Z(t) = exp

[
−Fλ(φ(t)) + Fλ(φ(0)) −

∫ t

0
Wλ(φ(s)) ds

]
,

(29)

with Fλ given by (A.2) and Wλ by (A.4) after the replacement A0 ↔ A. In order to compare
the results coming from the expression above with those described in the previous section,
we carry out the computation of the Gaussian integrals up to first order in λ and ω2 (which
means first order in J ). Note that Z(t) is the exponential of a term of order λ, and so, in the
computation of the parts involving such Z(t) terms, the measure covariance shall contribute
only with its part involving A0 (recall that A = A0 − ω2�), otherwise we get terms of order
λω2. Hence, we have

lim
t→∞〈ϕu(t)ϕv(t)〉 = Zu−N,v + T

(1)
λ + T

(2)
λ + T

(3)
λ , (30)

where Zu−N,v comes from the Z block of covariance C (26)–(28), and T
(n)
λ (with n = 1, 2, 3)

are given by (A.7). The computation of the covariance term above is presented in appendix B.
For the heat flow we obtain (see appendix B)

Fv→v+1 = ω4

2ζM ′ (Tv+1 − Tv), (31)

that is, exactly the same result of section 3 (see expression (17)), with ζj+1 = ζj = ζ,M

replaced by M ′ and J by ω2.

5. Concluding remarks

The understanding of heat conduction (in particular, the validity of Fourier’s Law) in one-
dimensional lattices is, say, a classical problem of nonequilibrium statistical physics. Many
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works (computer simulations in the great majority) are dedicated to this problem, with
several conflicting results. We recall one of these disagreements: in [12] the authors claim
that any one-dimensional momentum conserving system has anomalous conductivity, but
in [13, 14] a momentum conserving model with normal conductivity is described. As
pointed out in [15], in many cases the computational difficulties are not just a result of
weak computer or ineffective procedures: it has become clear that the complete solution
of the heat conduction problem requires the development of new analytical methods of
modelling.

The present paper considers the development of an approach which leads to an analytic
expression for the heat conductivity. We study a system related to a particular model of physical
interest (namely, the Frenkel–Kontorova model). We show that, for a weak anharmonicity,
if we keep the thermal reservoir at the boundaries only, Fourier’s law does not hold at
any temperature. For a comparison between the effects of the on-site and the coupling
potentials, we recall that our model has a harmonic coupling and a cosine on-site potential,
and that in the opposite case, i.e., cosine coupling and harmonic on-site potential, there is
a phase transition (Fourier–non-Fourier at high–low temperatures, respectively) as described
in [8]. It is worth recalling that our result is in agreement with computer simulations: in
[9]—see figure 7 and note that g ≈ 1/λ—for small λ (large g), the numerical simulations
indicate a divergent conductivity for all temperatures, i.e. Fourier’s law does not hold in
this case.

In relation to this contrast between, say, Fourier behaviour for the chain with harmonic
on-site potential and cosine interparticle interaction (as claimed in [8] for high temperature)
and non-Fourier behaviour for the system with harmonic coupling and cosine on-site potential,
we recall that such a contrast appears also in the comparison between the rotor model, with
cosine coupling (without the on-site potential), and the Frenkel–Kontorova model with small
anharmonicity. A definite interpretation of such a phenomenon is still unknown. In fact, some
authors [16] claim that it is still necessary to understand even the Fourier behaviour for the
rotor model (a chain with a translational invariant interaction). It shows how intricate are the
microscopic mechanisms behind Fourier’s law.

To show the reliability of our treatment involving a perturbative expansion in the
coupling J , we study the heat flow by starting also from the exact solution of the linear
part of the dynamics, and we obtain the same result as our previous treatment. And in
favour of the perturbative computation in λ (i.e., in the anharmonicity), we recall some
previous works on nonconservative stochastic Langevin systems with heat baths at the same
temperature: a problem involving related dynamical stochastic equations and with similar
integral representations for the correlations functions . The four-point function is rigorously
studied in [17], and there we show that the complete treatment adds only small corrections to
the first-order perturbative analysis [18], in the case of low temperatures and weak coupling
interactions. Moreover, there the perturbative potential involves, say, a ‘hard’ anharmonicity,
i.e., the potential is a polynomial (unbounded) expression; here, in the present paper we
have a ‘soft’ (bounded) anharmonic perturbation. For high temperatures, a cluster expansion
developed in [19] supports the perturbative treatment described in [20].

Finally, we emphasize that our analytical approach is quite general and that we expect to
use it in the study of more intrincate problems, e.g., a system with strong anharmonicity.
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Appendix A

We describe here some mathematical manipulations related to the two-point correlation
function of section 3.

The first term in Z(t) (A.3) may be rewritten as

ui dBi = γ
−1/2
i uiγ

1/2
i dBi

= γ
−1/2
i ui

(
dφi + A0

i,kφk dt
)

= −γ −1
i [Ji−N,jφj + λ sin(φi−N)]

(
dφi + A0

i,kφk dt
)
. (A.1)

For the terms with dφi , the Itô formula gives

−γ −1
i Ji−N,jφj dφi = −dFJ − γ −1

i φiJi−N,jA
0
jkφk dt,

FJ (φ) = γ −1
i φiJi−N,jφj ,

−γ −1
i λ sin(φi−N) dφi = −dFλ + γ −1

i φiλ cos(φi−N) dφi−N,

Fλ(φ) = γ −1
i λ sin(φi−N)φi.

(A.2)

Hence, we have

Z(t) = exp{−Fλ(φ(t)) − FJ (φ(t)) + Fλ(φ(0)) + FJ (φ(0))}
× exp

{
−

∫ t

0
WJ (φ(s)) ds −

∫ t

0
Wλ(φ(s)) ds −

∫ t

0
WλJ (φ(s)) ds

}
, (A.3)

where FJ and Fλ are as previously defined in (A.2), and

WJ (φ(s)) = γ −1
i φi(s)Ji−N,jA

0
jkφk(s) + φk(s)A

0T

ki γ
−1
i Ji−N,jφj (s)

+ 1
2φj ′(s)J T

j ′,i−Nγ −1
i Ji−N,jφj (s),

Wλ(φ(s)) = γ −1
i φi(s)λ cos(φi−N(s))A0

i−N,kφk(s) + γ −1
i λ sin(φi−N(s))A0

ikφk(s) (A.4)

+ 1
2γ −1

i λ2 sin2(φi−N(s)),

WλJ (φ(s)) = γ −1
i λ sin(φi−N(s))Ji−N,jφj (s).

In short, we have an integral representation a la Feynman–Kac formula for the correlations.
Turning to the energy flux, from (7) we have

Fj→ =
∑
r>j

Jj,r (ϕj − ϕr)(t)
ϕj+N + ϕr+N

2
, r ∈ {1, 2, . . . , N}. (A.5)

To carry out the computation of limt→∞〈Fj→〉, we first note that

C(t, s) = exp(−(t − s)A0)C + O(exp[−(t + s)ζ/2]), for t > s, (A.6)

and the effects of the second term on the right-hand side of the equation above vanish as
t → ∞. Hence, from (15)–(A.4), for 〈ϕuϕv〉 ≡ limt→∞〈ϕu(t)ϕv(t)〉, with u > N, v � N ,
we have, up to first order in λ and J ,

〈ϕuϕv〉 = T
(1)
λ + T

(2)
λ + T

(3)
λ + T

(1)
J + T

(2)
J + T

(3)
J , (A.7)
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T
(1)
λ = −λ

〈
φu(t)φv(t)γ

−1
i

e+iφi−N (t) − e−iφi−N (t)

2i
φi(t)

〉
0

= −λ
Tv

2Mζv

exp

(
−1

2

Tv

M

)
δu−N,v,

T
(2)
λ = −λ

∫ t

0
ds

〈
φu(t)φv(t)γ

−1
i φi(s)

e+iφi−N (s) + e−iφi−N (s)

2
A0

i−N,kφk(s)

〉
0

= λ
T 2

v

4M2ζv

exp

(
−1

2

Tv

M

)
δu−N,v,

T
(3)
λ = −λ

∫ t

0
ds

〈
φu(t)φv(t)γ

−1
i

e+iφi−N (s) − e−iφi−N (s)

2i
A0

i,kφk(s)

〉
0

= λ
Tv

2Mζv

exp

(
−1

2

Tv

M

)
δu−N,v − λ

T 2
v

4M2ζv

exp

(
−1

2

Tv

M

)
δu−N,v,

T
(1)
J = − 〈

φu(t)φv(t)γ
−1
i φi(t)Ji−N,jφj (t)

〉
0 = −Ju−N,vTv

2Mζu−N

,

T
(2)
J = −

∫ t

0
ds

〈
φu(t)φv(t)γ

−1
i φi(s)Ji−N,jA

0
jkφk(s)

〉
0

= 0,

T
(3)
J = −

∫ t

0
ds

〈
φu(t)φv(t)γ

−1
i Ji−N,jφj (s)A

0
ikφk(s)

〉
0

= Jv,u−NTu−N

M(ζu−N + ζv)
+

Ju−N,vTvζv

2Mζu−N(ζu−N + ζv)
− Ju−N,vTv

2M(ζu−N + ζv)
.

Note that T
(1)
λ + T

(2)
λ + T

(3)
λ = 0, i.e., up to first order in λ, the anharmonic potential does not

change the heat flow; the notation 〈·〉0 above means the average for the process with J and
λ = 0. The expressions involve several, but straightforward, Gaussian integrations.

Appendix B

Let us analyse the covariance term in (30), section 4.
With the notation M ′ ≡ M + 2ω2, where ω2 � M , we have

Z
(r)
jj ′ =

N∑
j1,j2=1

Fj,j1Fj ′,j2f
(Z)

(
cj1 , cj2

)
Fr,j1Fr,j2

≈ ω2

ζM ′

N∑
j1,j2=1

Fj,j1Fj ′,j2

(
cj1 − cj2

)
Fr,j1Fr,j2 . (B.1)

And to analyse each cj term, we use the notation ν ≡ exp[iπ/(N + 1)]. Hence, we can rewrite
the matrix F as

Fj,j ′ =
√

2

N + 1
sin

(
πjj ′

N + 1

)
=

√
2

N + 1

ν+jj ′ − ν−jj ′

2i
. (B.2)

We have
N∑

j1,j2=1

Fj,j1Fj ′,j2cj1Fr,j1Fr,j2 = δj ′,r

N∑
j1=1

Fj,j1cj1Fr,j1

= δj ′,r

N∑
j1=1

√
2

N + 1

ν+jj1 − ν−jj1

2i
· ν+j1 + ν−j1

2
·
√

2

N + 1

ν+rj1 − ν−rj1

2i
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= −δj ′,r
1

8

2

N + 1

N∑
j1=1

(ν(1+j+j ′)j1 + ν(−1+j+j ′)j1 − ν(1−j+j ′)j1 − ν(−1−j+j ′)j1

− ν(1+j−j ′)j1 − ν(−1+j−j ′)j1 + ν(1−j−j ′)j1 + ν(−1−j−j ′)j1). (B.3)

Denoting by Rα, α = 1, 2, . . . , 8 each term of the sum above, we have (note that 1 + j + j ′,
−1 + j + j ′, 1 − j − j ′,−1 − j − j ′ �= 0)

R1 + R2 + R7 + R8 = 2[−1 + (−1)j+j ′
],

R3 + R4 + R5 + R6 = 2Nδj,j ′+1 + 2Nδj+1,j ′ + [−1 + (−1)j+j ′
](1 − δj,j ′+1) (B.4)

+ [−1 + (−1)j+j ′
](1 − δj+1,j ′),

where we have used the identity

N∑
j1=1

νlj1 =



N for l = 0,

νl − (−1)l

1 − νl
for l �= 0.

(B.5)

Thus, we get

N∑
j1,j2=1

Fj,j1Fj ′,j2cj1Fr,j1Fr,j2 = δj ′,r




1

2
for j = j ′ + 1 or j ′ = j + 1,

0 otherwise,
(B.6)

and an analogous expression for the sum involving cj2 . Finally, we obtain

Zj,j ′ =
N∑

r=1

Z
(r)
j,j ′Tr

= ω2

ζM ′

N∑
r=1

[
1

2
δj ′,r (δj,j ′+1 + δj+1,j ′)Tr − 1

2
δj,r (δj,j ′+1 + δj+1,j ′)Tr

]
. (B.7)

Hence, as the T
(n)
λ sum vanishes, for the heat flow we have

Fv→v+1 = −ω2

2
〈ϕvϕ(v+1)+N 〉 +

ω2

2
〈ϕv+1ϕv+N 〉

= − ω4

2ζM ′

(
1

2
Tv − 1

2
Tv+1

)
+

ω4

2ζM ′

(
1

2
Tv+1 − 1

2
Tv

)
,

Fv→v+1 = ω4

2ζM ′ (Tv+1 − Tv).

(B.8)
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